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In this paper we examine gas flow in a porous medium with porosity discontinuity sur- 
faces. The conditions on such surfaces are obtained by invoking additional assumptions 
within the scope of the models described in [i]. As an illustration, we present the solu- 
tion of a problem of nonstationary flow in a pipe with a porous insert with finite width. 
We note that in works on gas flows in porous media, porosity discontinuities are not usually 
adequately studied. For example, continuity conditions, which can be reasonable justified 
only for low subsonic velocities, are imposed on them. In this sense, [2] is an exception. 
In [2], the assumption of conservation of entropy during gas inflow into a porous material 
and the "Borda impact" scheme when the gas flows out of it was used for problems involving 
the interaction of a shock wave with a porous half-space and with a porous coating. The 
system of assumptions in [i], adopted for the same purposes in what follows, including the 
schemes indicated, permits analyzing a wider class of regimes (for example, sonic or super- 
sonic gas flow out of a porous material into a region with sufficiently low pressure). 

i. Since in what follows the main attention is devoted to porosity discontinuities, 
we shall restrict ourselves to a quite simple model of a porous medium, referred to in what 
follows as the material. We shall assume that the material is absolutely rigid, that its 
properties at each point do not depend on orientation (isotropy), and that there are no so- 
called blind pores. In addition, we shall assume that viscosity and thermal conductivity 
are important only in processes of force and thermal interaction between the gas and the 
material. Without specifying other assumptions, widely used in the theory of percolation 
of gases and liquids (see [3, 4])) we shall write out the integral conservation laws for 
mass, momentum, and energy of the gas and the energy of the material. If t is the time 
and V is an arbitrary volume, occupied by the gas and material (the latter can also be ab- 
sent), fixed in space, and founded by the surface 3V, then the laws listed above have the 
form 
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where do is an element of ~V with the unit external normal vector n; m is the porosity 
(relative pore volume); p is the density; p is the presure; e is the specific (per unit mass) 
internal energy, which is a known function of p and p; i = e + p/p is the specific enthalpy; 
v is the velocity of the gas; v= Ivl; v~=v.n; Ep is the energy per unit volume of material; 

is the force with which the material, located in a unit volume of the medium, acts on the 
gas; m(l -- m)pq is the heat flux out of this material into the gas (we have in mind the gas 
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located in the same volume). The factor m(l -- m)p in front of q is introduced for con- 
venience and t and to are arbitrary times (t > to). 

In order to close system (i.i), together with an equation of state of the gas e = 
e(p, p) or the equations e = e(p, T) and p = p(p, T) and the corresponding equation EP = 
EP(TP) for the material (T and TP are the temperature of the gas and of the material), ex- 
pressions are required for F and q. The expressions indicated are usually taken in the 
form 

�9 F = p v m - - m ( t - - m ) p f ,  f ~ ~ t v ,  q =  ~ q ( T ~ - - T ) ,  (1.2) 

and in addition ~t and ~q are known positive-deflnite functions of scalar parameters of the 
gas and of the material (including v), but not their derivatives. The factor in front of 
is introduced in (1.2) from the same considerations as in front of q in (I.I). In the 
equation for F , the first term gives the force stemming from the change in the "throughput" 
section of pores. Its meaning is easy to understand by comparing (i.i) and (1.2) with the 
equations for quasi-one-dimensional flow in a channel with a variable area S, in which the 
force acting on the gas from the side of the walls in the segment of the channel where S 
changes by AS equals pAS. The second term in the same equation is related to the friction 
between the gas and the material. For low velocities ~f does not depend on v, and for a 
uniform material (Vm ~ 0) the first equation in (1.2) reduces to Darcy's law: F= --kv with 
a positive constant k. According to (i.i) and (1.2), (l--m)[ and (i -- m)q are quantities 
referred to unit mass of gas. 

Before going on to discontinuity surfaces for m, on which 7m becomes infinite and, for 
this reason, the equation for F becomes meaningless, we shall present for completeness the 
equations for the flow following from (I.i) and (1.2), valid in subregions of continuity of 
all parameters, and relations on strong discontinuities, different from the discontinuity 
surfaces of the properties of the material. These equations and relations are obtained from 
(i.i) and (1.2) by a standard method and reduce to well-known differential and finite 
equalities: 

09 ~ V P + ( t - - m ) ~ =  m- W - +  V(mpv) = 0 ,  - - + 7  0. 
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In obtaining these relations, it was assumed that m does not depend on t. In (1.3), d/dr 
is the total differential operator with respect to t along the trajectory of a gas particle; 
s is the specific entropy of the gas, and, in addition, it was assumed that s = s(i, p) and 
Tds = di -- (i/0)dp; the square brackets indicate the difference of the quantities enclosed 
on the discontinuity; v n is the projection of v along the vector normal n to the discon- 
tinuity; D is the velocity discontinuity along the normal to itself and D > 0, if the dis- 
continuity moves in the direction n; v~ is the projection of v tangent to the discontinuity. 
On the strength of the last condition in (1.3), EP or TP can be discontinuous only on dis- 
continuities that do not move along the material. We also note that according to (1.2) and 
the fourth equation in (1.3), stationary flows are possible, strictly speaking, within the 
scope of the model described only when the temperatures of the gas and material are equal 
(TP = T). If, as often happens, the heat capacity of the material is much greater than the 
heat capacity of the gas, the rate of change of TP turns out to be so small that the flow is 
practically stationary forTP ~T as well. The thermal conductivity of the material, which 
often exceeds by orders of magnitude the thermal conductivity of the gas and in many cases 
must be taken into account in constructing a model, acts in the same direction. Taking 
into account the thermal conductivity of the material leads to a change in the fourth and 
eliminates the last equation in system (1.3). Naturally, in this case, discontinuities in 
EP become impossible. In what follows, in the problem of gas flow through a porous insert 
(Sec. 3), instead of the equation for EP from (i.i) or its result from (1.3), the material 
is assumed to be isothermal (TP ~ const). 

2. On the porosity discontinuity surface ~V m, the component of the gradient ~V m normal 
to V m becomes infinite, while on the strength of (1.2), the corresponding component of the 
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force F also becomes infinite. The divergence of some volume quantity (in this case the 
force components), as usual, indicates the necessity for introducing an analogous surface 
characteristic, which we shall denote by F ~. It is natural to assume that 

Ea = p~[m]. (2.1) 

Here, as previously, [m] = m+--m-; the plus (minus) index is assigned to parameters before 
(after) the discontinuity in the direction of flow; the normal n to 8V m is chosen so that 
u~ =v.n~0; F~ is the projection of the surface force on n; pO is the average pressure, 
acting on the end-face segments of the porous material. Since in order to determine pa 
it is necessary to make additional assumptions, (2.1) should be viewed, for now, as a rela- 
tion between two as yet unknown quantities; F ~ and po. 

Taking into account in (i.I) the presence of a surface force on 8V m and following the 
usual procedure in other respects, we find that within the scope of the model of an iso- 
tropic material adopted, the following equalities must be satisfied on the porosity dis- 
continuities: 

[mpv ] = 0, [m (p + = F (2.2) 

[mp~%v~] = O, [rap% (2i + v2)] = O. 

The basic difference between these equalities and similar relations in (1.3), written for 
stationary discontinuities (D = 0), lies in the presence of the factor m and the surface 
force F ~ in (2.2). In addition, in order that the last condition in (2.2) be applicable 
for models that are different from the one being examined here, the term v 2 in it is re- 
tained, although on the strength of the first and third conditions, v 2 can be replaced by 
v~, as is done in (1.3). 

Since F a in (2.2) or p~ in (2.1) are as yet unknown, in order to close the system of 
conditions on the discontinuity m, additional assumptions are necessary. In addition, it 
is necessary to distinguish three possibilities: i) j ~ (PVn)+ = (pVn)_ = 0, i.e., the gas 
does not flow through the discontinuity at the point being examined; 2) the gas flows into 
a region with lower porosity; 3) the gas flows out of this region. If j = 0, then, as for 
the usual tangential discontinuity in the gas, all conditions (2.2), except the second con- 
dition, are satisfied for arbitrary jumps in v~ and total entropy I = i + v2/2 = i + v~/2. 
The remaining condition in (2.2), which for j = 0 reduces to 

[rap] = pc[m], (2.3) 

is satisfied if p~ = p+ = p_. Therefore, it may be assumed that those regions of the 
porosity discontinuity surfaces through which gas does not flow do not differ in the model 
being examined from the usual tangential discontinuities. The same result is obtained from 
(2.3), if instead of assuming that the three pressures (pO p+, and p_) coincide, a weaker 
assumption, that pO = ap+ + 8P- with u + 8 = 1 and 0 ~. ~ ~. i, is used. 

If the gas flows into the region with lower porosity, then we shall limit ourselves to 
the case of subsonic normal inflow veloclty components (M n- < i, where M n = Vn/a, while a 
is the velocity of sound in the gas), which is completely sufficient for the assumptions 
encountered most often. Since here the inflow occurs with an increase in velocity and with 
a drop in pressure, as in [i, 2], it is natural to assume that in this case there are no 
significant separations, accompanied by an increase in the gas entropy and therefore 

Is] = O. (2.4) 

Here s can be taken as any function of the gas entropy, for example, pp-~ for a perfect gas 
wlthan adiabatic index ~. Condition (2.4) together with the first, third, and fourth 
equalities in (2.2) forms a closed system. Solving it, it is then possible to determine in 
each specific problem, if necessary, F c from the second equation in (2.2), and pO from F ~ 

using (2.1). 

In the case in which the gas flows out of the region with lower porosity, according to 
[i], we shall examine three different regimes. If Mn• < 1, i.e., for a completely subsonic 
outflow, the expansion of the flow is accompanied by an increase in pressure, which does not 
permit using the assumption of an absence of separations and conservation of entropy. Turn- 
ing in this case to the "Borda impact" discontinuity scheme we set 

p a = p _ ,  (2 .5)  
which t o g e t h e r  w i th  (2 .1)  c l o s e s  the  sys tem ( 2 . 2 ) .  
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For sonic and supersonic outflow (M n_ >/ i), condition (2.5) is not satisfied, while 
the flow, passing through the porosity discontinuity, can become both sub- and supersonic. 
Since all quantities in (2.2) with the minus index are known for M n_ ~ i, for Mn+ < i, the 
parameters with the plus index, just as in [i], are determined from a solution of the prob- 
lem of flow in the region with high porosity using only three (the first, third, and fourth) 
conditions from (2.2). The second condition in (2.2), together with (2.1), can, as in the 
case of gas inflow into a region with low porosity, then be used for calculating F ~ and 
pO. Retardation from Mn-/~ 1 to Mn+ < i occurs under the action of jolts (oblique and al- 
most straight, "closing") and mixing on boundaries of jets and separation zones. In addi- 
tion, as in other cases, the microstructure of the flow is important only in a layer, whose 
thickness along n is of the order of the characteristic size of pores (or the distance be- 
tween them) and for this reason comprises the internal structure of the discontinuity. 

In contrast to the preceding case, for supersonic flow from both sides of the dis- 
continuity (M n_ ~ i, Mn+ > i), all parameters with the plus index must be determined unique- 
ly by parameters with the minus index. The latter, according to [i], is achieved by adding 
to (2.1) and (2.2) either condition (2.4) or the equality 

pa = p+, (2.6)  

and, in addition, in light of the comparison carried out in [i] with results of experiments 
on the interaction of shock waves with perforated barriers, the use of (2.6) is preferable. 

We emphasize that relations (2.1)-(2.6), like the equations of Sec. I, describe gas 
flow in an isotropic material, which also has a series of other properties specified pre- 
viously. The difference between the real properties of the material and the assumed proper- 
ties makes it necessary to make corresponding corrections. We shall illustrate this for a 
material with "limiting anisotropy," which we shall take to mean the following. Let the 
velocity vector be written in the form v = u|, where | is a unit vector, defining the orien- 
tation of v. For a limiting anisotropic material, we will assume that ] is a known char- 
acteristic, which can be discontinuous. Without considering all the changes necessary in 
such a case, we shall consider two points. First of all, since now | is a known function 
of the coordinates, instead of three vector equations of motion only a single equation from 
(1.3) remains : 

d----f+T--yf-k-(i--m)lt=O -y/-= + v T ~ ,  [ . l=~tv! , ,  

where 3/~l  is the operator of differentiation along the coordinate, measured along the 
streamline. Second, on the discontinuity surfaces for m and |, the condition for the com- 
ponent of the velocity v~ tangent to the discontinuity from (2.2) is replaced by 

[,npv~v~l F ~ = ~, (2.7) 

where F~ is a component of the surface force, introduced in an appropriate manner. The 
remaining conditions from (2.2), in this case, remain as before (the fourth, due to the 
fact that in it v 2 is not replaced by v~). 

For a limiting anisotropic material, i• are known on both sides of the discontinuity 
and (2.7) is used only for calculating F~. A similar situation occurs also for an inflow of 
gas into an anisotropio material from an isotropic material. However, the situation changes 
if the gas flows out of the anisotropic material into the isotropic material (or in a space 
free of the material). Here F~ must be given. In particular, we can set F~ = 0~ which for 
j ~=0 leads to conservation of v~. 

Without analyzing other properties of the flow in different anisotropic media, we note 
that, as evident from the preceding discussion, obtaining conditions on a discontinuity of 
the type studied requires an examination of the microstructure of the flow in some neighbor- 
hood of the discontinuity. Although such an analysis is possible at different levels (using 
various assumptions, as done above, or in the approximation of a more complete model with a 
microscopic analysis of the structure of the material, taking into account the gas vis- 
cosity, etc.), closure of the corresponding system of relations on the discontinuity without 
this, as a rule, is impossible. A similar situation occurs not only in percolation prob- 
lems, but also in studying the flow of gas through perforated barriers, boundaries of a free 
space, an infinitely dense lattice of profiles, etc., always when the discontinuity replaces 
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a region in which external forces that are not known from a global model act on the flow. 
Attempts to circumvent the problem of determining the forces indicated within the scope of 
global models without using additional assumptions or detailed examination of the micro- 
structure basedon a more complete ("local") model are not justified. In this connection, 
we point out the work in [5], where in formulating the condtions on the front of a lattice 
of profiles, the variational principle, which is valid for a global but not for a local 
model, is used. 

3. As an illustration of the application of the mathematical model described above, 
we shall examine the one-dimensional problem of nonstationary gas flow in a semiinfinite 
pipe with a porous insert, placed at a finite distance from the edge (Fig. i). For t < 0, 
the edge of the pipe is closed with a membrane, which separates the gas, located in the pipe 
and having constant density po, pressure po, and temperature To, and zero velocity vo ~ 0, 
from the vacuum. We shall place the origin of the coordinate x at the left boundary of the 
insert, and we shall choose its length l ~ as the scale. Then the right boundary of the 
insert will be situated at x = i, while the edge of the pipe will be situated at x = X > i. 

The membrane is suddenly exploded at time t = 0, after which begins the flow into the 
vacuum, whose wave diagram for x <~ X and not very large t is shown schematically in the 
upper part of Fig. i. In the diagram, the continuous lines show the c- characteristics 
(characteristics in the second family), the dashed lines show the c + characteristics, and 
the dot-dash line shows the vertical x = i, the right boundary of the insert (its left 
boundary coincides with the t axis). In the presence of the flow, the gas parameters are 
discontinuous on the insert boundaries, as is shown in Fig. 1 by the breaks in the char- 
acteristics. When the membrane is ruptured, a centered rarefaction wave consisting of rec- 
tilinear c- characteristics propagates first to the left along the channel, as in the case 
of a pipe with an insert. The centered wave is bounded above by the c + characteristic bc. 
To the left of the insert (for x < 0), a simple wave-type flow with a rectilinear c- char- 
acteristic is realized for all t. Along the vertical c- characteristic of the bunch abc, 
the Mach number is M ~ v/a = i. According to calculations for t > tb, in the problem being 
examined the Mach number at the edge of the pipe can only increase, which ensures one- 
dimensionality of the flow within the pipe. The transition to supersonic flow out of the 
pipe is related to a change in the flow regime out of the material and occurs after M+, the 
"right" value of M at x = i, exceeds unity. For sufficiently large t, on some part of the 
pipe, which lles next to its edge and the size of which increases with time almost linearly, 
a stationary flow is established which is homogeneous to the left and to the right of the 
insert. In addition, M < 1 for x < 0 and M > 1 for 1 < x ~ X. A wave with c- characteris- 
tics, formed at the initial stage of the outflow and approaching the centered wave more and 
more with time, separates the homogeneous subsonic flow from the gas at rest. 

Figures 2 and 3, where the pressure and Mach number distributions along the pipe are 
given for different times, demonstrate the attainment of the steady state. The correspon- 
dence between the numbers near the curves and the times is as follows: 0 (t = 0), i (t = 
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0.02), 2 (t = 0.08), 3 (t = 0.22), 4 (t = 0.45), 5 (t = 0.66), 6 (t = 1.00), 7 (t = 1.22), 
O 02 8 (t = 1.55), 9 (t = 2.00). The time is referred to Z~ and the pressure to poao ; a 0 

upper index indicates a dimensional quantity; a~=Vxp~/p~ lathe initial velocity of 
sound in the gas. Curves 1-4 correspond to subcritical flow out of the material (M_ < i), 
which occurs in the Borda impact regime. Curve 5 corresponds to critical outflow (M_ = l) 
with M+ < I. By this time, the flow in the insert is practically established. Within the 
scope of the model adopted, in the regime indicated, the mlcrostructure of the efflux zone 
of the jets is terminated by a stationary closing jump. After the pressure to the right of 
the closing jump, as a result of evacuation of the end segment of the pipe (i < x < X), be- 
comes sufficiently low, while the intensity of the jump decreases (the pressure to the left 
of the jump remains practically the same), a regime with M+ > 1 is realized. At the same 
time, the closing jump is displaced to the right (curves 6-9) and at some time is carried 
out of the pipe. 

The results, presented in Figs. 2 and 3, were obtained assuming that the material is 
isothermal (TP ~ To) for a perfect gas with a gas constant R ~ The functions ~ and ~, as 
in the case of Darcy's law, were assumed to be constant. It can be shown that in this case 
the solution in dimensionless variables (the density is scaled to p~, the velocity to a~, 
the enthalpy to a~ 2 , and the temperature to a~=/R ~ depends on five dimensionless constants: 
~, X, m, k/= (1-- m) ~IO/a~ , and k s=(1-m)(x--1)~Io/a~. Figures 2 and 3 correspond to ~ : i, 
4, X = 3, m = 0.9, kf = 5, and kq = 0.023. 

The calculation was carried out using Godunov's difference scheme [6], modified for the 
problem being examined. Without considering all thedetails, we shall only indicate two 
points. First, a considerably nonuniform grid, whose cells decreased smoothly when the 
section x = 1 was approached from both sides, was used. Second, an analogous problem con- 
cerning disintegration of a discontinuity upon the surface of the jump m was added to the 
problem of the disintegration of an arbitrary discontinuity in the gas, which, as is well 
known, constitutes the basic scheme proposed by Godunov. It was solved within the scope of 
the flow schemes described in Sec. 2. Naturally, the same schemes at each time relate the 
discontinuities in parameters at the boundaries of the insert (for x = 0 and x = i). 
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In conclusion, we acknowledge useful discussions with Yu. D. Shmyglevskii and V. I. 
Maron. 
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INTERACTION OF SHOCK WAVES AND PROTECTIVE SCREENS IN A LIQUID 

AND IN A TWO-PHASE MEDIUM 

B. E. Gel'fand, A. V. Gubanov, 
and E. I. Timofeev 

UDC 532.593:532.529 

The significant, for practical applications, characteristics of changes in shock-wave 
parameters at boundaries separating a two-phase mixture and a continuous liquid are clari- 
fied by investigations of the propagation of pressure waves in two-phase gas--liquid media. 

One of the often-discussed practical applications of the study of the dynamics of wave 
processes in a two-phase medium is related to the damping of pressure waves by bubble 
screens. However, almost any problem with damping of pressure waves in a two-phase medium 
separates into two independent, but closely related, problems of their attenuation and 
amplification on boundaries separating media with different acoustical impedance. Thus, the 
problem of amplification of pressure waves is encountered in analyzing their transition into 
a medium with a high acoustical impedance. It is well known that when shock waves are in- 
cident on a separation boundary in a two-phase medium, as the acoustical impedance increases, 
the pressure differential on the shock front increases by a factor of up to 5-7 [1-5]. When 
shock waves pass into a medium with a lower acoustical impedance, the pressures waves are 
observed to attenuate by a factor of 3-5 [1-5] or damping of short wavelength excitations in 
the gas-fluid medium becomes possible. 

In this connection, depending on the specific conditions, it turns out that protective 
properties of water bubble screens in liquids begin to be determined by the ratios of the 
acoustical impedances of the liquid and the two-phase medium on both boundaries of the 
screen; on one of them, the pressure differential increases, while on the other it decreases. 
Therefore, the effectiveness of screens will depend on the pressure in the medium, the volume 
concentration of gas in the liquid, and the intensity of the wave. When the acoustical im- 
pedances of the continuous liquid and the two-phase medium approach one another, as noted, 
for example, with an increase in pressure or decrease in the volume concentration of gas in 
the liquid, the protective screens become transparent to shock waves and, therefore, become 
ineffective. 

Computational data, indicating the low effectiveness of bubble screens for damping 
shock waves with pressure differential on the front exceeding 5 mPa with the volume concen- 
tration of gas in the liquid up to i0%, were already obtained in [6]. However, the computed 
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